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Computer-Aided Analysis of Arbitrarily
Shaped Coaxial Discontinuities

WOIJCIECH K. GWAREK

Abstract — This paper proposes a method of analyzing a coaxial discon-
tinuity arbitrarily shaped in two dimensions (radial and longitudinal) but
maintaining its axial symmetry. It is shown that under such assumptions
the equations to be solved correspond to the equations describing an
equivalent planar circuit filled with anonuniform medium. These equations
are solved by a version of the finite-difference time-domain method. The
method produces a universal computer algorithm capab]e of solving a wide
range of practical problems with no analytical preprocessing. The examples
presented show that the method can be effectively used in engineering
applications.

I. INTRODUCTION

NALYSIS OF coaxial discontinuities was a hot issue
A some 20 or more years ago, when the foundations of
precise coaxial techniques were being developed. At that
time most simple types of discontinuities such as steps in
inner or outer conductors [1} and open end capacitances
[2] were analyzed and characterized in the form of for-
mulas, curves, and tables [4].

Today the coaxial technique is still of great importance.
Its foundations are well known, but a designer wishing to
introduce an unconventional discontinuity is faced with a
formidable problem. He can use the old curves and tables
but they concern in most cases isolated discontinuities, and
fail when there are several of them close enough to inter-
fere with each other. Another possibility is to apply
numerical techniques. A straightforward approach is to
expand the fields in series of waveguide modes of axial
symmetry and try to satisfy the boundary conditions. The
variational method may be supportive in the effort [3] but
since these series converge slowly, the procedure is com-
plicated even for simple discontinuities and becomes im-
practical for more complex ones.

This paper proposes a method for analyzing a coaxial
discontinuity arbitrarily shaped in two dimensions (radial
and longitudinal) but maintaining its axial symmetry. It is
shown that under such assumptions the equations to be
solved can be transformed to a form identical with the
equations describing an equivalent planar circuit filled
with an inhomogeneous medium. These equations are
solved by a version of the finite-difference time-domain
(FD-TD) method. The method is intended to produce a
universal computer algorithm capable of solving a wide
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range of practical problems with no analytical pre-
processing and with the user’s involvement reduced to
defining the shape of the analyzed discontinuity.

II. PLANAR EQUIVALENT CIRCUIT OF A
CoAXIAL DISCONTINUITY

Let us assume an example of a circuit of axial symmetry
which is arbitrarily shaped in two dimensions (axial z and
radial r) as shown in the cross section in Fig. 1. We
assume that the circuit is excited by a TEM mode of the
coaxial line entering the circuit from the left. Because of
the axial symmetry of both the input wave and the
boundary conditions, the wave remains axially symmetri-
cal throughout the circuit and can be described in any
point of the circuit by a magnetic field vector with one
component: '

H= q¢¢h(r, z)e/*!

(1)
where a, is the unit vector in the azimuthal direction in

the cylindrical coordinate system. The E field may be
calculated from the equation

1
E=—vVXH.
Jjwe

@)

Thus the problem of field analysis in the circuit under
study is reduced to a two-dimensional problem with
¥,(r, z) being an unknown function.

To solve the problem let us introduce two auxiliary
functions:

J=a,XE (3)
and
V=-—rH,. (4)
Taking into account (1), (2), (3), and (4), we obtain
1 j 4 av
J=j—-a¢><(v><H)=———[a 8r ZE] (5)
The Maxwell equation
Vv XE=— jouH (6)
used with (1), (3), and (4) gives
aJ, dI  jeuV
dz * ar @

Equations (5) and (7) can be rewritten in a form more
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Fig. 1. A coaxial discontinuity.
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Fig. 2. Equivalent planar circuit of the discontinuity of Fig. 1.

convenient for further discussion:

V L o 8
Vi =- Y ( )
av
J=-C— 9
\Z P ©)

where L =re, C,=p/r, and Vv, is the two-dimensional
nabla operator in rectangular coordinates r and z.
Equations (8) and (9) are identical with those for a
planar two-dimensional circuit [6] filled with an inhomoge-
neous medium. Thus, instead of analyzing the circuit of
Fig. 1, we may analyze its planar equivalence in Fig. 2.

III. ANALYSIS OF THE EQUIVALENT
PrLANAR CIRCUIT

There are several methods of planar circuit analysis, but
if we assume that the method we are looking for must
allow effective calculations of the frequency-dependent
characteristics of an inhomogeneously filled circuit with no
analytical preprocessing, the choice is limited to two: the
FD-TD method [5]-[7], [11] and the transmission-line ma-
trix (TLM) method [8], [9]. Of these two methods the
FD-TD method was found to be more effective in applica-
tion to circuits such as that of Fig. 2 and will be discussed
later.

To analyze the circuit of Fig. 2, we follow the approach
described in [6], [7], and [12]. The circuit is divided into a
set of meshes (Fig. 3); these are basically square of size a
but can be modified to match the boundary shape. If the
coordinates of the node (lying in the middle of the mesh)
in the kth row and the /th column are denoted by z, and
r,, replacing the differentials in (8) and (9) by finite
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Fig. 3. Equivalent planar circuit of Fig. 2 as a set of meshes prepared

for FD-TD calculations.

differences At and a yields

a At
JZ(Z,+ Esrk’t0+ _f)
a At
:Jz(z,+ 2’ Tislo = —2_)
At
(V(z+ a,1,10) = V(2 1y, 1)) aLy(r) fi(1, k)
(10)
a At
Jr(z,,rk+ 5’t0+ —2')
a At
=Jr(zl>rk+5’t0_—2-)

_(V(Zl’ reta,tg)~V(z,re, 1))
At

' aLs(rk +a/2)f,(1, k)

a At
V(zpry,to+ At)=V(zr,ty)— Jz(z,+ 22Tk tot T)
“

(11)

a At
*JZ(ZI—E,I'k,tO'F—z-)

2

a At
—J,(z,,rk—i,to+7))

a At
+J, Z,,rk+5,t0+~—)

At
aCs(rk)f3(l’ k)

where f,(1, k), f,(I, k), and f,(I, k) are mesh shape func-
tions which are equal to unity for all the meshes inside the
circuit but can adopt different values (calculated by a
boundary matching procedure) for meshes lying at the
circuit’s boundary.

The analysis is conducted by using (10), (11), and (12) to
simulate the wave propagation in the circuit excited by a
matched pulse source and terminated by a matched load.
The Fourier transform is used to obtain frequency-depen-
dent S matrix parameters.

The equivalent planar circuit describing a coaxial dis-
continuity has to be calculated with relatively high accu-
racy. To ensure that accuracy without boosting the com-
puting time, we must consider some aspects of the FD-TD
method.

(12)
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Fig. 4. A corner of an equivalent circuit with the correcting inductance.

A. Boundary Matching Procedure

Theoretically, any accuracy requirements of an FD
method can be met by reducing the mesh size. However,
when the mesh size decreases n times, the time of comput-
ing rises n® times because the number of meshes rises n?
times. The step in time has to be cut by the factor of n to
ensure algorithm stability [6]. This underlines the impor-
tance of procedures allowing better boundary approxima-
tion without decreasing the mesh size. Such a procedure
was introduced in [6]. It will be used here in a form
modified to include the circuit’s inhomogeneous filling and
supplemented by the right angle correction as explained
below.

Let us assume a fragment of a planar circuit including a
right angle corner (Fig. 4), with the nodes close to the
corner denoted by Nj, N;, N;. In this fragment of the
circuit the current flowing around the corner tends to
concentrate near it while the FD algorithm assumes that it
passes through the node N,. That is why in the FD-TD
calculations, when a corner such as that of Fig. 4 is
considered, the additional inductance L, is added to con-
nect the nodes N; and N,. After numerical experiments
this value was chosen to be

L.= 4(L12 + Lza) (13)

where L, and L,; are inductances between the corre-
sponding nodes assumed normally in the FD-TD al-
gorithm.

B. Modeling of Matched Loads and Sources

When compensated coaxial discontinuities are analyzed,
the associated levels of the reflection coefficient are very
low. That is why the matched loads and sources have to be
modeled in the algorithm with great accuracy. Such accu-
racy can be obtained with the procedure described in [12].
Fig. 5 presents the results of calculations of |Sy,| versus
frequency (characterized by the ratio of mesh size to
wavelength a/A) for a uniform line having a length of 20
meshes. It is seen that when the procedure of [12] is used,
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Fig. 5. Reflection coefficient error in FD-TD calculations as a function
of the ratio of mesh size to wavelength for a uniform line having a
length of 20 meshes.

the errors of matching drop to negligible values even for
relatively high a /A ratios.

It should be noted that modeling of a matched load or a
matched source is valid only for the TEM mode. In
calculations we must assume that the source and the load
are placed far enough from the discontinuities to ensure
sufficient attenuation of the higher modes. This condition
is not difficult to satisfy since all higher modes of axial
symmetry have the cutoff frequencies well above the nor-
mal range of operation of coaxial lines, and the higher
modes are effectively attenuated even at a relatively short
distance from the discontinuity. Numerical tests have
shown that in most cases a distance equal to the outer
conductor radius is sufficient to eliminate error caused by
improper matching of the higher modes.

The kth horizontal row of meshes corresponds to coaxial
lines of radii r,—a/2 and r, + a/2. The characteristic
impedance of such a line is equal to

Z()k_"“\/‘ r+a/2)

Iy —a/2

while in the model described by (10)—(12) this impedance
corresponds to the admittance

1
Y = am— T e —
% 2q Ls V e 1,

In precise calculation of matching conditions for com-
pensated discontinuities, the difference between (14) and
(15) can cause additional error. This error can be eliminated
by replacing C, and L, in (10) and (12) with C,/ and L]
obtained from integral interpretation of a mesh:

(14)

(15)

C/(r,) = - In (16)

1 1 (rk+a/2). e

Li(r,) T e n

C. Pulse Excitation

As was mentioned above, the calculations are carried
out by simulating a pulse excitation of the circuit and
calculating the Fourier transform of the signals at the
input and the output. If the source voltage as a function of
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TABLE 1
EIGENFREQUENCIES OF A CYLINDRICAL RESONATOR MODE
Eigenfrequency ™o TMg; TMgy TMg,  TMg,
Calculated
analytically 03827 0.6297 0.8785 1.0108 1.0707
Calculated
numerically 03815 0.627 0.872 1.004 1.0645

time V,(¢) is close to the Dirac § function, the circuit is
excited by a very wide frequency spectrum. This allows
calculations of wide-band characteristics of the circuit but
may have a negative side effect in the case of discontinuity
calculations. Exciting the circuit at higher frequencies al-
lows the higher waveguide modes to propagate along the
circuit, which prolongs the transient process and also the
computing time. To eliminate this effect, the V;(¢) func-
tion used in the calculations was chosen to be the §-type
pulse after passing through a bandpass filter having a
cutoff frequency w,, that is,

sin (w,¢
() for |t] <1

() ={ o« (18)
0 for |z| > ¢,.

The time limit #, was introduced for obvious practical
reasons. The value of w, is typically assumed to be slightly
below the cutoff frequency of the first waveguide mode.

IV. EXAMPLES OF APPLICATION

Some examples of the application of the proposed
method will be presented for purposes of comparison with
the experimental results or with calculations by other
methods. Such relatively simple examples were chosen to
test the method because of availability of reference results.
It must be stressed that the developed algorithm allows
much more complicated discontinuities to be analyzed
with no further analytical or programming work.

Example 1: The first example does not exactly concern
a discontinuity but its results say quite a lot about the
method’s accuracy. Let us consider a cylindrical resonator
of radius r, and length /= r,. Its equivalent planar circuit
for TM,,,,,, modes is a square circuit grounded at one side.
The circuit is excited by a pulse entering it by an ad-
ditional line formed of one row of meshes. Minima of the
function J,(w) describing the current entering the square
circuit indicate the eigenfrequencies of the resonator’s
TM,,,., modes [7]. Table I compares the results of calcula-
tions assuming a mesh size a =r;/15.5 with the values
obtained analytically. The frequency is normalized such
that it is equal to unity for a wavelength equal to ry. Good
accuracy of the eigenvalue calculations for the waveguide
modes is a good prognosis for the method’s overall accu-
racy since these modes are generated at discontinuities and
determine their properties. The results are also interesting
since the circuit considered includes the axis of symmetry,
which in the equivalent planar circuit gives =0 and
€ = o0. The grid was situated such that the axis was passing
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Fig. 6. Capacitance of the open end of a 50 © (7 mm) coaxial line

terminated in a circular waveguide as calculated by the presented

method (continuous line), compared with calculations by Bianco et al.
[3] (crosses).
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Fig. 7. Reflection coefficient versus frequency for a step transition
between two 60 € lines with D =10 mm and D; = 3.623 mm calcu-
lated by our method (continuous line) and measured by Kraus [10]
(dashed line).

through centers of meshes where V=0 was assumed. No
special problems with algorithm stability were encoun-
tered.

Example 2: The capacitance of an open-circuited 50
coaxial line terminated in a circular waveguide is consid-
ered. The results of calculations are compared in Fig. 6
with those obtained by Bianco er al. [3] by a variational
method. The agreement is very good. The results of calcu-
lations by the FD-TD method were obtained with a mesh
size a = 0.0966D (where D is the outer conductor diame-
ter) and practically do not change when the calculations
are repeated with a smaller mesh size.

Example 3: A step transition between two 60 © lines
(with the outer conductor diameters equal to D =10 mm
and D, = 3.623 mm) is considered. In Fig. 7 the results of
calculations by our method with a mesh size a = 0.01636D
are compared to measurements by Kraus [10].

Example 4: A tapered transition between the lines con-
sidered in example 3 is investigated. The taper consists of
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Fig. 8. Reflection coefficient versus frequency for a tapered transition
between two 60 Q lines with D =10 mm and D, =3.623 mm calcu-
lated by our method (continuous line) and measured by Kraus [10]
(dashed line).
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Fig. 9. Reflection coefficient versus frequency for a 60 Q line with a
compensated dielectric support with D =10 mm, b=1 mm, and ¢, =
2.55 calculated by our method (continuous line) and measured by
Kraus [10] (dashed line).

two cones forming a 60 @ line. The center of the outer
cone is shifted by a distance / left or right with respect to
the center of the inner cone. The results of calculations
with the same mesh size as in example 3 are compared in
Fig. 8 with the measurements by Kraus [10].

- Example 5: A compensated support made of a dielectric
of ¢, = 2.55 is considered. The results of calculations (with
mesh size a = 0.02D) are compared in Fig. 9, again with
the measurements by Kraus [10].

The last three examples concern practical problems for
which, to the author’s knowledge, no reliable results of
calculations have been obtained by any other analytical or
numerical method. The only available comparative data
are the measurement results by Kraus [10]. The experi-
ments were carried out by Kraus in a very scrupulous way.
Line models of large diameters were used. Errors of Sy
measurements were estimated by the author to be smaller
than 0.002. The errors in the object dimensions were not
estimated. When comparing Kraus’s results with our calcu-
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lations, we have to note that this comparison is done at
extremely low levels of the reflection coefficient and takes
into account extremely small changes in the circuit’s di-
mensions. Thus it is a very severe test of accuracy for both
the measurements and the calculations.

There is very good agreement between our calculations
and the measurements by Kraus in the search for the
optimum dimensions of the objects, yielding the smallest
|S11) There is also fairly good agreement in the character
of the curves obtained. In searching for an explanation of
the existing differences, we have conducted additional
checks on the accuracy of the calculations. Some of them
were repeated with increased mesh density and with in-
creased distances between the discontinuity, the source,
and the load. No significant changes of the results were
observed. This is a strong indication that the calculations
were conducted with sufficient accuracy. On the other
hand, if we assume the mentioned estimation of the |Sy;]
measurement error and also some reasonable error in
establishing dimensions of the objects (for example
0.001D), experimental error becomes a hkely explanation
of the differences.

The above examples were calculated on an IBM PC/XT
computer with an 8 MHz clock. The time of computing
ranged from about 15 min for example 2 to about 80 min
for each of the curves of examples 3, 4, and 5. The
computing time on a fast mainframe computer should be
of the order of several tens of seconds for each of the
examples.

V. CONCLUSIONS

This paper proposes a method for analyzing arbitrarily
shaped coaxial discontinuities. The method produces a
universal computer algorithm which permits high-accuracy
calculations with no analytical preprocessing. This al-
gorithm can be implemented even on a personal computer,
yielding reasonable computing time for solving practical
problems. It is shown that the method can be effectively
applied to engineering problems.
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