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Computer-Aided Analysis of Arbitrarily
Shaped Coaxial Discontinuities

WOJCIECH K. GWAREK

Abstract —Tlsis paper proposes a method of analyzing a coaxiaf discon-

tinuity arbitrarily shaped in two dimensions (radiaf and Iongitndinaf) bnt

maintaining its axiaf symmetry. It is shown that under such assumptions

the equations to be solved correspond to the equations describing an

equivalent planar circuit filled with auonuniform medium. These equations

are solved by a version of the finite-difference time-domain method. The

method produces a universaf computer algorithm capable of solving a wide

range of practicaf problems with no anafyticaf preprocessing. The examples

presented show that the metkod can be effectively used in engineering

applications.

I. INTRODUCTION

A NALYSIS OF coaxial discontinuities was a hot issue

some 20 or more years ago, when the foundations of

precise coaxial techniques were being developed. At that

time most simple types of discontinuities such as steps in

inner or outer conductors [1] and open end capacitances

[2] were analyzed and characterized in the form of for-

mulas, curves, and tables [4].

Today the coaxial technique is still of great importance.

Its foundations are well known, but a designer wishing to

introduce an unconventional discontinuity is faced with a

formidable problem. He can use the old curves and tables

but they concern in most cases isolated discontinuities, and

fail when there are several of them close enough to inter-

fere with each other. Another possibility is to apply

numerical techniques. A straightforward approach is to

expand the fields in series of waveguide modes of axial

symmetry and try to satisfy the boundary conditions. The

variational method may be supportive in the effort [3] but

since these se~es converge slowly, the procedure is com-

plicated even for simple discontinuities and becomes im-

practical for more complex ones.

This paper proposes a method for analyzing a coaxial

discontinuity arbitrarily shaped in two dimensions (radial

and longitudinal) but maintaining its axial symmetry. It is

shown that under such assumptions the equations to be

solved can be transformed to a form identical with the

equations describing an equivalent planar circuit filled

with an inhomogeneous medium. These’ equations are

solved by a version of the finite-difference time-domain

(FD-TD) method. The method is intended to produce a

universal computer algorithm capable of solving a wide
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range of practical problems with no analytical pre-

processing and with the user’s involvement. reduced to

defining the shape of the ~al~ed discontin~ty.

II. PLANAR EQUIVALENT CIRCUIT OF A

COAXIAL DISCONTINUITY

Let us assume an example of a circuit of axial symmetry

which is arbitrarily shaped in two dimensions (axiall z and

radial r) as shown in the cross section in Fig. 1. We

assume that the circuit is excited by a TEM mode of the

coaxial line entering the circuit from the left. Because of

the axial symmetry ‘of both the input wave and the

boundary conditions, the wave remains, axially symmet@-

cal throughout the circuit and can be described in any

point of the circuit by a magnetic field vector with one

component:

ll=fz+$h(r, z)e@” (1)

where a ~ is the unit vector in the azimuthal direction in

the cylindrical coordinate system. The E field may be

calculated from the equation

E=+x H,
J6X

(2)

Thus the problem of field analysis in the circuit under

study is reduced to a two-dimensional problem with

l~(r, Z) be@ an unknown functi~n.
To solve the problem let us introduce two auxiliary

functions:

J=a+x E (3)

and

V=–rH+. (4)

Taking into account (1), (2), (3), and (4), we obtain

1 ‘[ w av
J= 1—a+x(v xH) =-& arz+a=z . (5)

juc

The Maxwell equation

vXE=–jupH (6)

used with (l), (3), and (4) gives

aJz aJr jupV

X+;=– r “
(7)

Equations (5) and [7) can be rewritten in a forlm more
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Fig. 1. Acoaxial discontinuity.
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Fig. 2. Equivalent planar circuit of the discontinuity of Fig. 1.

convenient for further discussion:

(8)

where L, = rc, C. = p/r, and V, is the two-dimensional

nabla operator in rectangular coordinates r and z.

Equations (8) and (9) are identical with those for a

planar two-dimensional circuit [6] filled ivith an inhomoge-

heous medium. Thus, instead of analyzing the circuit of

Fig. 1, we may analyze its planar equivalence in Fig. 2.

III. ANALYSIS OF THE EQUIVALENT

PLANAR CIRCUIT

There are several methods of planar circuit analysis, but

if we assume that the method we are looking for must

allow effective calculations of the frequency-dependent

characteristics of an inhomogeneously filled circuit with no

analytical preprocessing, the choice is limited to two: the

FD-TD method [5]–[7], [11] and the transmission-line ma-

trix (TLM) method [8], [9]. Of these two methods the

FD-TD method was found to be more effective in applica-

tion to circuits such as that of Fig. 2 and will be discussed

later.

To analyze the circuit of Fig. 2, we follow the approach

described in [6], [7], and [12]. The circuit is divided into a

set of meshes (Fig. 3); these are basically square of size a

but can be modified to match the boundary shape. If ‘the

coordinates of the node (lying in the middle of the mesh)

in the k th row and the lth column are denoted by zl and

r~, replacing the differentials in (8) and (9) by finite

OUTPUT

Fig. 3. Equivalent planar circuit of Fig. 2 as a set of meshes prepared
for FD-TD calculations.

differences At and a yields

-(v(z,+ a, r,, to)- Jdz[rk ‘o)) ~L (rk~~l(l k)
s

(lo)

-( V(zl, r~+a, to)- V(zl, r~, to))

(11)
At

aL,(r~ + a/z) f2(z)’)

v(zl, r~, to + At) =v(zl,r~, to )-( (J= zl+~,r~,to+~
L )

(–J, zl,r~–~,to+~
))

At

aC~(r~)f3(l, k)
(12)

where fl(l, k), f2(l, k), and f3 (1, k) are mesh shape func-
tions which are equal to unity for all the meshes inside the

circuit but can adopt different values (calculated by a

boundary matching procedure) for meshes lying at the

circuit’s boundary.

The analysis is conducted by using (10), (11), and (12) to

simulate the wave propagation in the circuit excited by a

matched pulse source and terminated by a matched load.

The Fourier transform is used to obtain frequency-depen-

dent S matrix parameters.

The equivalent planar circuit describing a coaxial dis-

continuity has to be calculated with relatively high accu-

racy. To ensure that accuracy without boosting the com-

puting time, we must consider some aspects of the FD-TD
method.
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Fig. 4. A comer of an equivalent circuit with the correcting inductance.

A. Boundary Matching Procedure

Theoretically, any accuracy requirements of an FD

method can be met by reducing the mesh size. However,

when the mesh size decreases n times, the time of comput-

ing rises n3 times because the number of meshes rises n 2

times. The step in time has to be cut by the factor of n to

ensure algorithm stability [6]. This underlines the impor-

tance of procedures allowing better boundary approxima-

tion without decreasing the mesh size. Such a procedure

was introduced in [6]. It will be used here in a form

modified to include the circuit’s inhomogeneous filling and

supplemented by the right angle correction as explained

below.

Let us assume a fragment of a planar circuit including a

right angle corner (Fig. 4), with the nodes close to the

corner denoted by IVl, Nz, Ng. In this fragment of the

circuit the current flowing around the comer tends to

concentrate near it while the FD algorithm assumes that it

passes through the node N2. That is why in the FD-TD

calculations, when a comer such as that of Fig. 4 is

considered, the additional inductance LC is added to con-

nect the nodes NI and N3. After numerical experiments

this value was chosen to be

LC= 4(L12 + .L23) (13)

where LIZ and Lz~ are inductances between the corre-

sponding nodes assumed normally in the FD-TD al-

gorithm.

B. Modeling of Matched Loads and Sources

When compensated coaxial discontinuities are analyzed,

the associated levels of the reflection coefficient are very

low. That is why the matched loads and sources have to be

modeled in the algorithm with great accuracy. Such accu-
racy can be obtained with the procedure described in [12].

Fig. 5 presents the results of calculations of ISIII versus

frequency (characterized by the ratio of mesh size to

wavelength a/A ) for a uniform line having a length of 20

meshes. It is seen that when the procedure of [12] is used,

1s111

““~1

:Lc!!la.
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Fig. 5. Reflection coefficient error in FD-TD calculations as a function

of the ratio of mesh size to wavelength for a uniform line having a
length of 20 meshes.

the errors of matching drop to negligible values even for

relatively high a/A ratios.

It should be noted that modeling of a matched load or a

matched source is valid only for the TEM mode. In

calculations we must assume that the source and the load

are placed far enough from the discontinuities to ensure

sufficient attenuation of the higher modes. This condition

is not difficult to satisfy since all higher modes of axial

symmetry have the cutoff frequencies well above the nor-

mal range of operation of coaxial lines, and the higher

modes are effectively attenuated even at a relatively short

distance from the discontinuity. Numerical tests have

shown that in most cases a distance equal t~ the outer

conductor radius is sufficient to eliminate error caused by

improper matching of the higher modes.

The kth horizontal row of meshes corresponds to coaxial

lines of radii r~ – a/2 and r~ + a/2. The characteristic

impedance of such a line is equal to

while in the model described by (10)–(12) this impedance

corresponds to the admittance

In precise calculation of matching conditions for com-

pensated discontinuities, the difference between (14) and

(15) can cause additional error. This error can be eliminated

by replacing C, and L, in (10) and (12) with C: and L:
obtained from integral interpretation of a mesh:

(16)()r~ + a/2
C:(r~) = ~ln ——–

r~– a/2

1

()

r~+ a/2
—=Aln –— (17)
L:(r~) <a r,, – a/2 “

C. Pulse Excitation

As was mentioned above, the calculations are carried

out by simulating a pulse excitation of the circuit and

calculating the Fourier transform of the signals at the

input and the output. If the source voltage as a function of
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TABLE I
EIGENFREQUENCIES OF A CYLINDRICAL RESONATOR MODE

Eigenfrequency TMOIO TMOII TM020 TM021 TM012
Calculated

analytically 0.3827 0.6297 0.8785 1.0108 1.0707
Calculated

numerically 0.3815 0.627 0.872 1.004 1.0645

time VO(t) is close to the Dirac 8 function, the circuit is

excited by a very wide frequency spectrum. This allows

calculations of wide-band characteristics of the circuit but

may have a negative side effect in the case of discontinuity

calculations. Exciting the circuit at higher frequencies al-

lows the higher waveguide modes to propagate along the

circuit, which prolongs the transient process and also the

computing time. To eliminate this effect, the V(O(t) func-

tion used in the calculations was chosen to be the &type

pulse after passing through a bandpass filter having a

cutoff frequency o,, that is,

/

sin(uCt)

for Ifl < tl

Vo(t)= Cdct (18)

Io for Itl>tl.

The time limit tl was introduced for obvious practical

reasons. The value of UCis typically assumed to be slightly

below the cutoff frequency of the first waveguide mode.

IV. EXAMPLES OF APPLICATION

Some examples of the application of the proposed

method will be presented for purposes of comparison with

the experimental results or with calculations by other

methods. Such relatively simple examples were chosen to

test the method because of availability of reference results.

It must be stressed that the developed algorithm allows

much more complicated discontinuities to be analyzed

with no further analytical or programming work.

Example 1: The first example does not exactly concern

a discontinuity but its results say quite a lot about the

method’s accuracy. Let us consider a cylindrical resonator

of radius rO and length 1 = rO. Its equivalent planar circuit

for TMO~~ modes is a square circuit grounded at one side.

The circuit is excited by a pulse entering it by an ad-

ditional line formed of one row of meshes. Minima of the

function .lt(u ) describing the current entering the square

circuit indicate the eigenfrequencies of the resonator’s

TMO~. modes [7]. Table I compares the results of calcula-

tions assuming a mesh size a = ro/15.5 with the values

obtained analytically. The frequency is normalized such

that it is equal to unity for a wavelength equal to ro. Good

accuracy of the eigenvalue calculations for the waveguide

modes is a good prognosis for the method’s overall accu-

racy since these modes are generated at discontinuities and

determine their properties. The results are also interesting

since the circuit considered includes the axis of symmetry,

which in the equivalent planar circuit gives p = O and

c = cc. The grid was situated such that the axis was passing
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Fig. 6. Capacitance of the open end of a 50 Q (7 mm) coaxial line

terminated in a circular waveguide as calculated by the presented
method (continuous line), compared with calculations by Bianco et al.
[3] (crosses).
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Fig. 7. Reflection coefficient versus frequency for a step transition
between two 60 Q lines with D =10 mm and DI = 3.623 mm calcu-
lated by our method (continuous hne) and measured by Kraus [10]
(dashed line).

through centers of meshes where V= O was assumed. No

special problems with algorithm stability were encoun-

tered.

Example 2: The capacitance of an open-circuited 50 fl

coaxial line terminated in a circular waveguide is consid-

ered. The results of calculations are compared in Fig. 6

with those obtained by Bianco et al. [3] by a variational
method. The agreement is very good. The results of calcu-

lations by the FD-TD method were obtained with a mesh

size a = 0.0966D (where D is the outer conductor diame-
ter) and practically do not change when the calculations

are repeated with a smaller mesh size.

Example 3: A step transition between two 60 G lines

(with the outer conductor diameters equal to D =10 mm
and DI = 3.623 mm) is considered. In Fig.’7 the results of

calculations by our method with a mesh size a = 0.01636D
are compared to measurements by Kraus [10].

Example 4: A tapered transition between the lines con-

sidered in example 3 is investigated. The taper consists of
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Fig. 8. Reflection coefficient versus frequency for a tapered transition

beween two 60 Q lines with D =10 mm and DI = 3.623 mm calcu-

lated by our method (continuous line) and measured by Kraus [10]
(dashed l~e).
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Fig. 9. Reflection coefficient versus frequency for a 60 Q line with a

compensated dielectric support with D =10 mm, b = 1mm, and 6, =
2.55 calculated by our method (continuous line) and measured by

Kraus [10] (dashed line).

two cones forming a 60 L! line. The center of the outer

cone is shifted by a distance 1 left or right with respect to

the center of the inner cone. The results of calculations

with the same mesh size as in example 3 are compared in

Fig. 8 with the measurements by Kraus [10].

- Example S: A compensated support made of a dielectric

of c,= 2.55 is considered. The results of calculations (with

mesh size a = 0.02D) are compared in Fig. 9, again with

the measurements by Kraus [10].

The last three examples concern practical problems for

which, to the author’s knowledge, no reliable results of

calculations have been obtained by any other analytical or

numerical method. The only available comparative data

are the measurement results by Kraus [10]. The experi-
ments were carried out by Kraus in a very scrupulous way.

Line models of large diameters were used. Errors of [Slll

measurements were estimated by the author to be smaller

than 0.002. The errors in the object dimensions were not

estimated. When comparing Kraus’s results with our calcu-
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lations, we have to note that this comparison is done at

extremely low levels of the reflection coefficient and takes

into account extremely small changes in the circuit’s di-

mensions. Thus it is a very severe test of accuracy for both

the measurements and the calculations.

There is very good agreement between our calculations

and the measurements by Kraus in the search for the

optimum dimensions of the objects, yielding the smallest

ISIII. There is also fairly good agreement in the character

of the curves obtained. In searching for an explanation of

the existing differences, we have conducted additional

checks on the accuracy of the calculations. Some of them

were repeated with increased mesh density and with in-

creased distances between the discontinuity, the source,

and the load. No significant changes of the results were

observed. This is a strong indication that the calculations

were conducted with sufficient accuracy. On the other

hand, if we assume the mentioned estimation of the Itllll

measurement error and also some reasonable error in

establishing dimensions of the objects (for example

0.00ID ), experimental error becomes a likely explanation

of the differences.

The above examples were calculated on an IBM PC/XT

computer with an 8 MHz clock. The time of computing

ranged from about 15 min for example 2 to about 80 tin

for each of the curves of examples 3, 4, and 5. The

computing time on a fast mainframe computer should be

of the order of several tens of seconds for each of the

examples.

V. CONCLUSIONS

This paper proposes a method for analyzing ~bitrarily

shaped coaxial discontinuities. The method produces a

universal computer algorithm which permits high-accuracy

calculations with no analytical preprocessing. This al-

gorithm can be implemented even on a personal computer,

yielding reasonable computing time for solving practical

problems. It is shown that the method can be effectively

applied to engineering problems.
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